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Abstract. A new mathematical model for the dynamic behavior of a thermostat situated in the cooling system of
an engine is presented. The model is in the form of a system of delay-differential equations with hysteresis. An
algorithm for numerical solutions of the model is described and some representative simulations are presented.
The model predicts steady oscillatory solutions for certain ranges of the system parameters which are depicted
for some parameter values. Also, it predicts initial overshooting of the engine coolant temperature. A Design of
Experiments approach is used to characterize the regions in the model parameter space where oscillations occur
and the results for those parameters which most influence the oscillations of solutions are presented.
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1. Introduction

Thermostats in cars, technically known as ‘engine-coolant control valves’, are devices situ-
ated in the cooling system and control the engine’s operating temperature. They are set to
adjust the cooling rate so that an essentially optimal acceptable operating temperature range
is maintained in the engine block. Since the cooling system is designed to handle the ex-
treme heat loads under which the engine can operate, only partial cooling capacity is required
when operating under normal conditions. Indeed, if the cooling system were to operate at
full capacity continuously, the engine would run too cold, well below its optimal operating
temperature. The thermostat senses the coolant temperature and allows a larger or smaller
flow of coolant through the radiator. In this way it is designed to keep the coolant temperature
at almost constant value. When the engine and the coolant are cold, the thermostat is closed
and the flow to the radiator is fully diverted to a bypass. Once the engine is running, the
coolant temperature rises and the thermostat incrementally opens the flow path to the radiator.
The flow splits between the part through the radiator and the part through the bypass. Under
heavy load conditions, the thermostat opens completely and then the full cooling capacity of
the radiator is realized.

In this paper we investigate the dynamic behavior of an automotive cooling system with
a thermostat. Although thermostats are conceptually very simple, their dynamic behavior is
not, since they exhibithysteresis, i.e., the way they open when the temperature rises differs
from the way they close when the temperature decreases. Moreover, the cooling loop in-
troduces delays into the system. Thus, interplay of hysteresis and delays is found, which is
the novel feature addressed here. There exists considerable mathematical literature dealing
with systems of ordinary differential equations with delays, the so-called delay differential
equations,cf. [1]–[3] and reference therein. The topic of hysteresis has received considerable
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attention recently,cf. [4]–[6] and references therein. But, to our knowledge, the only papers
where the two are combined are [7] and [8], where the mathematical analysis and numerical
simulations are presented for simpler versions of the present model. We just mention that in
[9] the problem discussed is with hysteresis, but without an explicit delay. In the engineering
literature (see,e.g., [10] or [11] and the references therein) the models are simpler. Often the
dynamics of the thermostat alone is the main topic and not its interactions within the cooling
loop.

The model that we present, which is of the ‘lumped mass’ type, attempts to capture this
hysteretic behavior. It is derived from the balance of energy rates in each of the cooling
system’s components. The model consists of a nonlinear system of three ordinary differential
equations for the thermostat, the engine, and the radiator temperatures, together with a func-
tional relation for the thermostat hysteresis opening function. It describes a thermostat situated
at the engine outlet. A model for a thermostat situated at the engine inlet and a comparison of
the behavior of the solutions to the two models will be investigated in the future.

We are interested in the behavior of the thermostat as an element of a system which is
nonlinear and includes hysteresis and delays. Since our dynamical system is strongly non-
linear, a number of complex types of behavior are possible. Our main interest here is in
identifying the parameter ranges where self-induced oscillations are found. From the practical
point of view, that of the automotive industry, considerable oscillations in the engine cooling
loop lead to deviations from the optimal engine operating conditions. These, in turn, may
adversely affect fuel consumption, car emissions, passenger comfort and possibly accelerate
engine wear. The long-term goal of our current research is optimal control of the engine
operating temperature via control of the thermostat. Another aspect of practical importance is
the temperature overshooting when starting from ambient temperature, which most solutions
exhibit. The characterization of the various oscillations and investigation of possible chaotic
behavior will be considered elsewhere.

The model and the algorithm can help the designer of a cooling system in simulating the
behavior of the system before it is actually constructed.

The model is constructed in Section 2, where detailed energy-transfer rates are obtained in
each of the system components and then assembled into a model. We fully explain the many
simplifying assumptions which underlie the model and indicate how to take into account, in
later stages, some features which we do not include in the present. In Section 3 we present
the results of the analysis which has been performed in [7] characterizing fully the onset of
oscillations in a simpler model. The numerical algorithm which has been used is described in
Section 4, where typical solutions are depicted. Since the model contains many parameters and
coefficients and does not have explicit or closed form solutions, we used the statistical method
of Design of Experiments (DOE) to identify those parameters that influence oscillations most.
The approach and the results can be found in Section 5. The graphical representation of the
response surfaces gives a substantial insight into the regions in the parameter space where
oscillations occur. A brief summary of our results is given in Section 6.

2. The model

In this section we present a dynamic model describing the time behavior of a thermostat
which is situated in the engine’s cooling system. We consider the whole cooling loop which
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Figure 1. Schematic setting of the cooling system: engine, radiator, bypass, heater and thermostat.

contains the thermostat, since we are interested in the (nonlinear) interactions among the loop
components.

A schematic diagram of the physical setting is depicted in Figure 1. Only the main elements
in the cooling system are considered: radiator, engine, bypass and heater.

The basic assumptions underlying the model are that the energy source in the system is the
engine; energy losses are in the radiator and heater; the internal thermostat temperature differs
from the coolant temperature. We take into account the heat lost to exhaust gases and radiation
only indirectly, as an estimated fraction of the engine power output. We describe the energy
losses in the radiator and in the heater by Newton’s law of cooling. The thermal interaction
between the thermostat and the coolant is modeled similarly. The thermo-mechanical behavior
of the thermostat is represented by the hysteresis graph, which we describe below. Finally, we
do not take into account any mechanical or flow characteristics, except that the total flow
is known and the flow at each loop component rearranges itself instantaneously with the
thermostat opening.

We denote the coolant temperature at the thermostat byT = T (t), as a function of timet
(in sec), the temperature of the thermostat itself byθ(t), the radiator coolant temperature by
Tr = Tr(t) and the engine coolant temperature byTe = Te(t) (in Fo).

We proceed to model the dynamic behavior of the system. The thermo-mechanical inform-
ation characterizing the thermostat is given by its hysteresis graphβ, depicted in Figure 2,
which consists of the two curvesfR, fL, and thehysteresis regionH which lies between them.
The hysteresis graphβ describes the opening of the valve as a ‘function’ of the thermostat
temperatureθ . To be more precise, sinceβ is a graph, we denote byω = ω(t) the fractional
opening of the valve. Whenω = 0 it is closed, all the coolant flows via the bypass and heater
loops, and there is no flow to the radiator. It is completely open whenω = 1 leading to
maximum flow and cooling by the radiator. The thermostat is partially open when 0< ω < 1,
and then only the fractionω of the fluid flows to the radiator, while the rest flows via the
bypass and heater.

The way hysteresis affects the dynamic behavior is as follows. The curvefR describes the
way the valve opens. When the state of the thermostat(θ(t), ω(t)) is on the curvefR and the
temperature is rising, theṅθ > 0, and the system will continue to move along the curvefR.
The valve closes alongfL. If the temperature is decreasing,i.e., θ̇ < 0, when(θ(t), ω(t)) is on
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Figure 2. The hysteresis curves ofβ.

fL, the thermostat will continue to move along the curvefL. It may happen, however, that the
system, while moving onfR, reaches a time wheṅθ(t) = 0 at a temperatureTL < θ(t) < TR,
and afterwards the temperature decreases. To describe the system’s behavior in such a case
we assume the so-called ‘generalized play model’ (see,e.g., [12] or [5]) by which the system
moves on the horizontal segment connecting the curvesfR andfL, while the valve opening is
ω = const., until it reaches the curvefL, on which it will continue moving down. We denote
this behavior by thehysteresisoperatorHβ , andω(t) = Hβ(θ(t)).

We assume thatH is filled with a family of horizontal segments connecting the two curves,
the ‘generalized play model’. Other choices of families of curves which fill the hysteresis
regionH lead to different models and possibly to different types of behavior. Eventually, the
wayH is filled has to be found experimentally.

Next, we give a short description of the thermostat. It is a device consisting of a metallic
case enclosing a cavity full of wax in which a metallic pin is partially inserted. A spring has
one end attached to the wax casing and the other end to the thermostat assembly. The exposed
end of the pin is also attached to the superstructure. When the wax temperature reaches the
valueTL (Figure 2), the wax starts melting which increases its volume and so it pushes the pin
out against the restoring force of the spring. This motion of the pin opens the valve leading to
coolant flow in the radiator loop. Once the wax is completely molten, at temperatureTR, the
pin is displaced at its maximum and the valve is fully open. The energy needed to displace the
pin and open the valve comes from the heat exchange between the coolant and the thermostat.
This energy is used to raise the wax temperature toTL, to melt it completely atTR and then to
raise the temperature of the melt.

The mathematical description of this process is as follows. Letcsth and clth be the total
heat capacities of the thermostat when fully closed and when fully open, respectively. These
correspond to the cases when the wax is fully solid and fully molten. Since we deal with wax
that starts softening atTL and is fully molten atTR we assume, for simplicity, that the heat
capacity is a linear interpolation of the temperature in the range[TL, TR], i.e.,

c∗ =


csth if θ 6 TL,
csth+ (clth− csth) θ−TLTR−TL if TL 6 θ 6 TR,
clth if TR 6 θ.

(2.1)
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This represents a continuous transition from solid to liquid when the wax is softening in the
temperature range[TL.TR].

Other choices are possible, for example, we may consider

c∗ = c∗(t) = csth+ ω(t)(clth− csth),
if we assume thatω also measures the fraction of molten wax. Here, the wax is assumed to
exist as a mixture of solid and liquid particles with volume fractions 1−ω andω, respectively.

We now describe the different elements of the model. The setting and notation for the
sources, temperatures, and delays are depicted in Figure 1.

Thermostat
We consider a small volume of coolant that arrives at the thermostat at timet from the engine
at at temperatureT (t), while θ(t) is the thermostat internal temperature (that of the wax).
Let hth be the heat exchange coefficient between the coolant and the thermostat; the energy
exchange rate is given by

heat flux= hth(T (t)− θ(t)).
This energy flux affects the thermostat temperature. It also affects the coolant temperature, but
in real systems this effect is negligible, because the total thermal capacitance of the coolant is
much greater than that of the thermostat.

Let λ denote the total latent heat of the wax in the thermostat, thenλω(t) is the amount of
energy needed to melt the fractionω. Combining these leads to

d

dt
(c∗θ + λω) = hth(T − θ).

Radiator
We consider a volume of coolant that arrives at the radiator from the thermostat at timet. Let
Tr denote the (averaged) radiator temperature,T rin denote the coolant temperature at the inlet
to the radiator andT rout the outlet temperature. The coolant flow time from the thermostat to
the radiator is denoted byτri and the time it takes to pass the radiator, the residence time,
by τ ∗r . We assume thatT rin(t) = T (t − τri), since there are no heat losses during the flow in
the pipes between any of the system components. This assumption can be relaxed if the loss
can be estimated. LetTamb be the averaged ambient temperature passing through the radiator;
using Newton’s law of cooling we have

qr = hr(Tr(t)− Tamb),

whereqr is the flux of energy lost to the air andhr is the radiator coefficient of heat exchange.
Let c be the heat capacity of a unit volume of coolant,vr be the maximal flow rate through

the radiator (when the thermostat is fully open), andVr be the total volume of the coolant in
the radiator, all three assumed constant. The energy rate balance in the radiator is: the energy
influx is cvrω(t)T rin(t), the loss to the atmosphere ishr(Tr(t) − Tamb) and the energy carried
with the outflow iscvrω(t)T rout(t). We also assume thatT rout(t) = Tr(t) and that the outflow
rate equals the inflow rate. Thus,

cVr
dTr(t)

dt
= cvrω(t)T

r
in(t)− cvrω(t)Tr(t)− hr(Tr(t)− Tamb)

= cvrω(t)(T (t − τri)− Tr(t))− hr(Tr(t)− Tamb).
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Bypass
We assume that the time delay in the bypass loop is the same as the total time delay in the
radiator loop, accordingly

τb = τri + τ ∗r + τro,
whereτro is the radiator to engine time of flow. The fluid inlet temperature isT (t) and the
outlet temperature (at the engine inlet) isT (t − τb). The energy flux at the outlet at timet is

energy outflux= cvr (1− ω(t))T (t − τb).

Heater
Consider a coolant volume that arrives at the heater from the thermostat. LetT hin denote the
coolant temperature at the heater inlet andT hout the outlet temperature. Denote the flow delay
from the thermostat to the heater byτhi and the residence time byτ ∗h .We assume thatT hin(t) =
T (t − τhi), since there are no heat loses on the way. Letvh be the flow rate in the heater loop,
assumed to be constant, and letTah be the averaged ambient temperature at the heater (it may
be different from the radiator ambient temperature). For the sake of simplicity we assume it is
constant. Then,

heat flux= qh = αsvhhh(T hin(t)− Tah),

wherehh is the coefficient of heat exchange and we introduced the input coefficientαs de-
noting the heater vent opening. Whenαs = 1 it is completely open, whenαs = 0 the vent
is completely closed and when 0< αs < 1, it is partially open. Then the heater energy rate
balance is

cvhT
h
out(t + τ ∗h ) = cvhT

h
in(t)− qh

= cvhT
h
in(t)− αsvhhh(T hin(t)− Tah)

= (cvh − αsvhhh)T hin(t)+ αsvhhhTah.

We setγ = αshh/c, and rewrite the equality as

T hout(t + τ ∗h ) = (1− γ )T hin(t)+ γ Tah.

Engine
We denote the flow delay from the radiator to the engine byτro and the delay from the heater
to the engine byτho. Then, at timet, the energy influx is from three sources: radiator, bypass
and heater, given by

cvrω(t)T
r
out(t − τro); cvr(1− ω(t))T (t − τb); cvhT

h
out(t − τho),

respectively. To simplify the notation below let

τr = τri + τ ∗r + τro + τ ∗e + τe
= τb + τ ∗e + τe

τh = τhi + τ ∗h + τho + τ ∗e + τe,
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whereτ ∗e is the engine residence time,τe is the time delay between the engine and the thermo-
stat andτb = τri + τ ∗r + τro. Thenτr represents the total delay, or the time of round trip, for
a coolant element from the thermostat via the radiator to the thermostat, whileτh is the total
delay in the heater loop.

The total energy influx to the engine is

influx = cvrω(t)T
r
out(t − τro)+ cvhT hout(t − τho)

+cvr(1− ω(t))T (t − τb).
Now, we assume instantaneous mixing of the coolant coming from the radiator, bypass and
heater, and we denote the entrance temperature asT ein, thus

c(vr + vh)T ein(t) = cvrω(t)T
r
out(t − τro)+ cvhT hout(t − τho)

+cvr(1− ω(t))T (t − τb).
Using the expression forT hout and recalling thatT rout = Tr we obtain

c(vr + vh)T ein(t) = cvrω(t)Tr(t − τro)+ cvr(1− ω(t))T (t − τb)
+cvh[(1− γ )T (t − τh + τ ∗e + τe)+ γ Tah].

Next, letVe be the total volume of the coolant in the engine block, and letcbl be the total heat
capacity of the engine block (all that is not coolant), then

(cVe + cbl)dTe
dt
= qe − c(vr + vh)Te(t)+ c(vr + vh)T ein
= qe − c(vr + vh)(Te(t)− T ein).

Hereqe is the rate of engine heat rejection. Usually it is an estimated fraction of the nominal
power rating of the engine.

We now return to the thermostat. Since we do not take into account the coolant heat loss
in the thermostat, the inlet and outlet temperatures are the same,T (t). Neglecting any heat
losses on the way, we assume that

T (t) = T eout(t − τe) = Te(t − τe).
Since the thermostat is physically situated inside the engine block, we assume thatτe andτ ∗e
are negligible and thereforeτb = τr . Next, set

τ = max{τr , τh}.

Now, we collect and summarize our findings above in the following model.

Thermostat model
Find the functions{θ, Te, Tr , ω} such that

d

dt
(c∗θ + λω) = hth(Te(t)− θ(t)), (2.2)

ω(t) = Hβ(θ(t)), (2.3)
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(cVe + cbl)dTedt
= qe − c(vr + vh)(Te(t)− T ein(t)), (2.4)

T ein(t) = (vrω(t)Tr(t − τro)+ vr(1− ω(t))Te(t − τr)
+ vh(1− γ )Te(t − τh)+ vhγ Tah)(vr + vh)−1, (2.5)

cVr
dTr
dt
= cvrω(t)(Te(t − τri)− Tr(t))− hr(Tr(t)− Tamb), (2.6)

Te(t) = Te0(t), Tr(t) = Tr0(t), −τ 6 t 6 0, (2.7)

θ(0) = θ0, ω(0) = ω0. (2.8)

Here,Te0, Tr0, θ0 andω0 are the initial conditions:Te0 andTr0 are given functions defined on
the time interval−τ 6 t 6 0. This is due to the existence of the delays in the system. The
initial condition forθ andω is specified only att = 0.

REMARK. If we wish to considerqe, qr , Tamb or Tah as known functions varying with time
we need to substituteqe = qe(t), qr = qr(t − τr + τri), Tamb= Tamb(t) or Tah= Tah(t − τh)
into (2.4)–(2.6).

The model consists of four dependent variables, one independent variable (time), four
initial conditions, a hysteresis graph consisting of two functions, and 21 system parameters.
It is possible to simplify it somewhat, but at the expense of the clear physical meaning of the
parameters, so we present the nondimensional model in Appendix B.

3. Mathematical analysis of simplified models

The model (2.2)–(2.8) is rather complicated and its mathematical analysis is an open prob-
lem. Since it is strongly nonlinear, and includes hysteresis and delays, questions of existence,
uniqueness and regularity of solutions need to be addressed. Also, it would be of interest to
obtain sufficient conditions for the appearance of self-induced oscillations. In this section we
present the analysis of two simplified versions of the model, where such sufficent conditions
were obtained. The aim was to obtain insight into the appearance of intrinsic oscillations, and
their relationship to the hysteres is curve and the system time delays. The full mathematical
analysis can be found in [7]. Additional analysis and results are given in [8].

The first model may be thought of as describing a system with thermostat, engine, radiator
and bypass, which has a (spatially uniform) temperatureθ , thermostat openingω, and a time
delayτ. The model, set in nondimensional form, is: Find the pair{θ, ω} such that

dθ

dt
= qe − qrω(t − τ), (3.1)

ω(t) = Hβ(θ(t)), (3.2)

θ(t) = θ0(t) for − τ 6 t 6 0, (3.3)

ω(−τ) = ω0. (3.4)

Hereθ0 is the initial temperature andω0 is the initial valve opening. Also,qe is the engine
thermal output andqr is the cooling power of the radiator.
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If we assume thatθ0 and the hysteresis curves are sufficiently smooth (say Lipschitz con-
tinuous) then the existence of a unique solution to (3.1)–(3.4) can be obtained by marching in
time in steps of sizeτ. Moreover, the solution is smooth except possibly for a jump att = 0.

We assume thatqe/qr < 1. Then it is easy to see that any steady solution{θ∗, ω∗} to
(3.1)–(3.4) has to satisfyω∗ = qe/qr, so that the right-hand side of (3.1) vanishes, and then
θ∗ ∈ [f −1

L (ω∗), f −1
r (ω∗)]. Clearly, whenqe/qr > 1 no steady state is possible.

We now describe the conditions for system oscillations. Letα be the minimum of the slopes
of the hysteresis curves at the valueqe/qr, i.e.,

α = min

{
dfL
dθ
(qe/qr),

dfR
dθ

(qe/qr)

}
.

Then, we have from [2, Theorem 3.2].

THEOREM 3.1.Assume that

qr τ α >
1

e
. (3.5)

Then the solution{θ, ω} of (3.1)–(3.4)that is not eventually constant, is oscillatory. In this
caseθ oscillates about the interval[f −1

L (ω∗), f −1
r (ω∗)], andω oscillates aboutω∗.

We remark that there may be oscillatory solutions for some values ofqr τα which do not
satisfy (3.5). The proof in [7] is based on conditions for oscillations for delay differential
equations.

Next, we present the model which is obtained from (3.1)–(3.4) when the cooling power of
the radiatorqr , is not constant but chosen to satisfy Newton’s cooling law

qr = h(θ − θamb),

whereθamb is the air ambient temperature which is taken as zero, andh is the heat exchange
coefficient.

The second model is: Find a pair{θ, ω} such that

dθ

dt
= qe − hω(t − τ)θ(t − τ), (3.6)

ω(t) = Hβ(θ(t)), (3.7)

θ(t) = θ0(t) for − τ 6 t 6 0, (3.8)

ω(−τ) = ω0. (3.9)

Let θL andθR be the solutions of

qe

hθ
= fL(θ), and

qe

hθ
= fR(θ),

respectively. The ‘singular values’ of (3.6)–(3.9) are allθ in the interval[θL, θR]. Any steady
solutions{θ∗, ω∗} of the second model satisfyω∗ = qe/(hθ∗) andθ∗ ∈ [θL, θR].

We have, see [2, Theorem 3.5]
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THEOREM 3.2 ([CSSZ]).A sufficient condition that all the solutions of(3.6)–(3.9)oscillate
about some singular value is

fR(θR) >
1

hτe
. (3.10)

4. Numerical algorithm and simulations

In this section we present the algorithm we used to obtain numerical solutions for the model
(2.2)–(2.8), and the representative results of our numerical experiments.

We employed the explicit Euler method to solve the system of ordinary differential equa-
tions. Although the algorithm was rather simple and more sophisticated methods of the predictor-
corrector type could have been used, it performed well, exhibited numerical stability and ran
quickly on a workstation. Thus, we felt that at this stage of the research further investment of
time and effort to improve it was unnecessary.

Let1t be the discretization time step. LetT je , θj , T jr , andωj denote the values of these
functions at timet = j1t ,

T je = Te(j1t), θj = θ(j1t), T jr = Tr(j1t), and ωj = ω(j1t).

These denote the finite differences approximations to the engine, thermostat, and radiator
temperatures and thermostat opening at timej1t, respectively. To take care of the system
delays letdr2e, de2r , dh anddb be the closest integers toτro/1t , τri/1t , τh/1t , andτr/1t ,
respectively. Also, letd be the closest integer to max{τr , τh}/1t.

The coolant volumes in various loops, heat rejection rates, coefficient values, values of
delay times and flow rates are determined from the engine design specifications and experi-
mentally determined curves, seee.g., [13].

Since we deal with a system with delays, we initialize the variables by setting

T je = Te0(j1t), T jr = Tr0(j1t), for − d 6 j 6 0,

together with

θ0 = θ0, ω0 = ω0.

Now, the algorithm proceeds in (time) steps. Assume that at the stepj all the function val-
ues{θk, T ke , T kr , ωk} have been determined for 06 k 6 j. Then{θj+1, T

j+1
e , T

j+1
r , ωj+1}

are determined as follows
First, we compute engine temperature from (2.4) and (2.5), using the formulas

T j+1
∗ = qe − c(vr + vh)T je + cvrwjT j−dr2er + cvr(1− wj)T j−dbe

+ cvh[(1− γ )T t−dhe + γ Tah],

T j+1
e = T je +

T
j+1
∗ 1t

cVe + cbl .
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(a) (b)

Figure 3. hr = 162·0, Tamb= 30·0, rps= 40·0 andV = 9·5

(a) (b)

Figure 4. hr = 162·0, Tamb= 90·0, rps= 40·0 andV = 9·5

(a) (b)

Figure 5. hr = 1112·0, Tamb= 28·0, rps= 63·0 andV = 9·5
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(a) (b)

Figure 6. hr = 236·0, Tamb= 28·0, rps= 63·0 andV = 9·5

Next, we compute the radiator temperature from (2.6) by

T j+1
r = T jr +1t(−hr(T jr − Tamb)+ cvrwj(T j−de2re − T jr ))(cVr)−1.

Then, θj+1 is computed in a number of steps, since we have to take into account the temper-
ature dependence of the heat capacity. Equation (2.2) is discretized as

cj+1
∗ θj+1 = cj∗θj +1thth(T

j
e − θj )− λ(wj − wj−1).

Note that the derivative ofω was shifted one time-step backward to keep the scheme explicit.
To approximatecj+1

∗ we useθj , thus

if θj > TR then cj+1
∗ = cl;

if θj 6 TL then cj+1
∗ = cs;

if TL 6 θj 6 TR then

cj+1
∗ = (csTR − clTL + 2(cl − cs)θj )(TR − TL)−1.

Finally, we compute the new openingωj+1 from the hysteresis curves and the play model
assumption as follows: ifωj = fR(θj ) andω is increasing, then the opening followsfR,when
ωj = fL(θj ) andθ is decreasing the opening follows the curvefL, otherwise the opening is
constant, at the same value as in the previous time step. In terms of coding we use

if (ωj = fR(θj )) then

if (θj+1 > θj ) then

ωj+1 = fR(θj+1)

else

ωj+1 = ωj
endif

else if (ωj = fL(θj )) then

if (θj+1 < θj ) then
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Table 1.The values of the simulation constants.

Notation Value Unit Explanation

cs 300·0 (Watt)(Sec)/F solid wax heat capacity

cl 1200·0 (Watt)(Sec)/F liquid wax heat capacity

λ 200·0 (Watt)(Sec) latent heat of wax

hth 50·0 (Watt)/F heat exchange coefficient of thermostat

hr 174·0 (Watt)/F heat exchange coefficient of radiator

c 1800·0 (Watt)(Sec)/(Lit)/F heat capacity of unit coolant

cbl 9900·0 (Watt)(Sec)/F engine block heat capacity

ω0 0·0 initial thermostat opening

(a) (b)

Figure 7. hr = 174·0, Tamb= 0·0, rps= 46·0 andV = 14·5

ωj+1 = fL(θj+1)

else

ωj+1 = ωj
endif

else if (fL(θ
j ) > ωj > fR(θ

j )) then

ωj+1 = ωj
endif

if (ωj+1 < fR(θ
j+1)) set ωj+1 = fR(θj+1)

if (ωj+1 > fL(θ
j+1)) set ωj+1 = fL(θj+1).

We now describe a number of typical or interesting simulations. Table 1 lists all the
constant values used in this experiment. In Figures 3–8 we depict our simulations of the
model. In each the engine rps (revolutions per second) is constant, and the numerical values of
some of the parameters are indicated below each figure. The engine, radiator and thermostat
temperatures are shown on the left, the thermostat opening on the right.
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(a) (b)

Figure 8. hr = 174·0, Tamb= 100·0, rps= 60·0 andV = 14·5

(a) (b)

(c)

Figure 9. The case with variable rps;hr = 112·0, Tamb= 28·0, rps= 40·0 andV = 9·5

In Figure 3 system oscillations with a period of 1·5 minutes can be seen. The initial temper-
ature overshooting is small. In Figures 4 and 5 there are no oscillations. Steady opening and
temperatures are achieved within about 5 minutes from start. Oscillations which clearly decay
with time are depicted in Figure 6. In Figure 7 the ambient temperature is very low, leading
to oscillations. The load and rps in Figure 8 are high so the thermostat opens fully. Finally, in
Figure 9 we depict the system response to variable rps. The rpsvs.time curve is shown on the
bottom, and it includes one sharp increase and one sharp decrease. The system response is seen
to be rather complicated. The figure represents more realistic ‘in town’ driving conditions.
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Figure 10.The contour plot of number of oscillations
in thehr -rps plane, withV = 14·0 andTamb= 56.0.

Figure 11. The plot in theTamb-rps plane, withV =
14·0 andhr = 174·0.

.

A typical run of 1500 seconds of simulations took about 2 seconds on a DEC ALPHA
workstation (model 2100).

5. Design of experiments

The problem (2.2)–(2.8) does not have closed-form solutions and therefore we do not have
an explicit way to determine the dependence of the solutions on system data. In view of the
large number of coefficients or parameters in the problem, we decided to perform a DOE
analysis to identify those parameters which have major influence on system oscillations and
temperature overshooting. For general reference on DOE, see,e.g., [14]. We present the results
of our investigation of the effects of four main parameters, factors in statistical language,
on four responses of the model. The parameters chosen for the study were the temperature
of the outside airTamb, total coolant volumeV , radiator heat exchange coefficienthr , and
engine speed rps (revolutions per second). The coolant flow rates, delays and engine power
generation were chosen to depend on rps. The main responses of interest were the number of
oscillations of the engine coolant temperature, peak coolant temperature, difference between
peak temperature and minimum temperature after the first peak temperature, and range in
temperature after the first peak temperature. The first temperature was an overshooting, much
bigger than any other peak, therefore we choose to discount it. The construction of a measure
of temperature oscillations was accomplished by the generating function∑

n

{if(sign(T n − T n−10)) = sign(T n−1− T n−11) then 0 else 1)}.

That is, we compare the temperature value at timetn = n1t with the value ten time steps
earlier at timetn−10 = (n − 10)1t. If the sign of the difference is different from the sign of
the difference at the previous time step, we count it as an oscillation, since there is a change
in the trend. The choice of ten time steps was found to give satisfactory results.

The values for each of the parameters were chosen to cover the entire range of realistic op-
erating conditions. The response function of the system with respect to the chosen parameters
was assumed to be nonlinear and included interactions among the factors.
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All the computer simulations were run at a constant rps and started from the ambient
temperature.

We employed a 4 factor central composite design with a single center point for the nu-
merical experiments. Replication of a center point and randomization of run order were unne-
cessary, since the experiments consisted of computer runs with no test-retest error. Moreover,
there was no need to attempt to reduce the size of the experiments, since a large number of
experimental runs could be accomplished in a short time with little expense. A single run con-
sisted of simulating 1500 seconds of system operation under the experimental conditions. The
results of fitting a quadratic response model to the number of oscillationsȳ and examination
of residual plots suggested that the following model was adequate

ȳ = 1·608− 1·657V + 0·004hr + 0·080Tamb+ 2·950 rps

(13·05) (0·2856) (0·0021) (0·1537) (0·4230)

−0·017(rps)2− 0·008(Tamb× rps).

(0·0041) (0·0032) (5.1)

The standard error of each coefficient is given in parentheses under the coefficient.
This model was chosen since the coefficients for the other interactions and quadratic terms

were found to be not significantly different from zero, which means these terms could be re-
placed by zero. These results seem to agree with the current understanding of cooling systems
behavior. The availability of statistical models, such as the one above, enabled a rapid and
efficient investigation of the entire range of operating conditions. Figure 10 shows the contour
plot of the number of oscillations as a function of rps and heat exchange coefficienthr . This
plot, as well as Figure 11, show a relationship that agrees with the experience of engineers
in the field. Excessive cooling capacity leads to increased propensity for system oscillations.
We note that increasing the heat exchange coefficient or decreasing the ambient temperature
result in increase in the system cooling power.

The second phase of the DOE was designed to investigate the consistency of the results
when a smaller region in the parameter space is studied. When the response surface has a
complex structure, with many local maxima and minima, the model for the smaller region
could contain many features not encompassed by the larger model. The experiment focused
on the region with the largest number of oscillations. An orthogonal central composite design
with all 24 factorial points, eight axial points and a single center point, was employed to
investigate the oscillations of the thermostat temperature.

The experimental approach was the same as in the first model. The responseyi of number
of oscillations was recorded for each experimental run. The simplified model was chosen
since the coefficients for the other interactions and the quadratic terms were found to be not
significantly different from zero. The model over the subregion with many oscillations reduced
to

ȳ = −27·79− 3·75V + 0·0022hr + 0·0085Tamb+ 2·47 rps

(8·08) (0·081) (0·004) (0·111) (0·239)

−0·0107(rps)2− 0·0058(Tamb× rps).

(0·0018) (0·0017) (5.2)

The model (5.2), for the reduced region, appears to be very different from the model (5.1)
for the entire region. However, the fitted values in the region of study are similar to the larger
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Figure 12. The reduced region plot in theV -rps plane withhr = 3000·0 andTamb= 10·0.

model where the regions overlap. That is, the predictions of both models when restricted to
the subregion of (5.2) agree well. The variance between the models increases as a function
of distance from the center point of (5.2). No evidence of local maxima or minima was
discovered in the subregion. The difference between the model for the reduced region and
the model for the entire region was compared over the reduced region. Figure 12 is a contour
plot of the difference between the larger model and the model for the reduced region.

6. Conclusions

We have developed a model for the dynamical behavior of automotive engine outlet ther-
mostats. The model is set as a system of three delay-differential equations for component
temperatures and a functional relationship for the thermostat opening. The latter represents the
hysteresis thermo-mechanical behavior of the valve. The model is based on energy flow rates.
A computer code, based on explicit time marching, has been employed to generate numerical
solutions to simulate the model behavior. The numerical algorithm was rather unsophistic-
ated, but served our purposes well. We found that the model predictions agree qualitatively
with what cooling systems engineers have been finding experimentally. The model predicts
the appearance of intrinsic oscillations in certain regions in the parameter space. Some of
these oscillations decay with time, others seem to go on undiminished. Moreover, when the
starting point is the ambient temperature the model predicts initial temperature overshoot. To
investigate the dependence of the oscillations on the various model parameters we employed
DOE and obtained a satisfactory characterization of the parameter regions where oscillations
occur.

We conclude that the model may be used as a tool helping the automotive engine and
cooling system designer to better characterize the systems vulnerability to oscillations and
to find ways to minimize them. Moreover, many additions and modifications are possible to
include other effects, to add additional interactions and to include other system components.
However, these come at the expense of making the model cumbersome and harder to analyze.
Finally, since the fluid flow was not considered, it may be of interest to add a stochastic
component to the model representing turbulent flow in parts of the system.

The model is complex and a mathematical analysis is needed to fully understand its prop-
erties. The novelty here is the combination of delay-differential equations with hysteresis.
Clearly, the nature of the oscillations needs further investigation. Indeed, we do not know how
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to distinguish between oscillations that decay with time, those that are periodic, quasiperiodic
and those that are chaotic.

The model seems to be interesting, useful and in need of further investigation.

Appendices. A. The list of coefficients

We have collected all the model parameters here.

c heat capacity of one liter of coolant[
watt · sec

lit · F
]
,

cbl total heat capacity of the engine
block [watt · sec/F ],

clth total heat capacity of the liquid wax
[watt · sec/F ],

csth total heat capacity of the solid wax
[watt · sec/F ],

hr heat exchange coefficient of the radi-
ator[watt/F ],

hth heat exchange coefficient of the ther-
mostat[watt/F ],

qe engine heat rejection[watt],
Tamb ambient (air) temperature[F ],
Tah passenger compartment air temperat-

ure[F ],
TL thermostat opening temperature[F ],
TR thermostat temperature when fully

open[F ],
vr coolant flow rate in the radiator loop

[lit/sec],

vh coolant flow rate in the heater loop
[lit/sec],

V total coolant volume in the system
[lit ],

Ve total coolant volume in the engine
[lit ],

Vr total coolant volume in the radiator
[lit ],

αs fractional heater compartment
opening,

γ = αshh/c,
λ total latent heat of the wax
[watt · sec],

τh round trip time (delay) in the heater
loop [sec],

τr round trip time (delay) in the radiator
loop [sec],

τri trip time (delay) from thermostat to
radiator[sec]

τro trip time (delay) from radiator to en-
gine[sec].

B. The model in nondimensional form

We present the model in a nondimensional form, to indicate the combinations of coefficients
that are controlling the problem. So we scale the variables in the model (2.2)–(2.8). We denote
the variables in (2.2)–(2.8) with a tilde, and the new ones without.

We start with the scaling of the time and the temperatures as follows

t = hth

(clth− csth)
t̃ = At̃, θ = θ̃ − TL

TL
, Te = T̃e − TL

TL
, T r = T̃r − TL

TL
.

TL is the temperature at which the thermostat begins to open. We could as well scale the tem-
peratures withTamb. Also, note thatA scales the time. Next, we introduce the new constants

a∗ = c∗
(clth− csth)

, (B.1)

b∗ = λ

TL(c
l
th− csth)

, (B.2)
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d∗e =
(
Ve + cbl

c

) hth

vr(c
l
th− csth)

, (B.3)

d∗r =
Vrhth

vr(c
l
th− csth)

, (B.4)

e∗ = γ vh

vr

(
1− Tah

TL

)
, (B.5)

h∗r =
hr

cvr
, (B.6)

Ta = 1− Tamb

TL
, v∗ = vh

vr
, (B.7)

q∗e =
qe

cTLvr
, (B.8)

τ̃ = τr

A
, τ̃ri = τri

A
, ˜τro = τro

A
, τ̃h = τh

A
, (B.9)

where

c∗ =


csth if θ 6 0,

1
2(c

s
th+ c1

th) 06 θ 6 TR−TL
TL

,

clth if TR−TL
TL
6 θ.

(B.10)

The hysteresis graphβ is scaled as

β∗ = β∗(θ(t), θ̇ (t)) = β(TL(θ(t)+ 1), θ̇ (t)). (B.11)

Now we can present the model (2.2)–(2.8) in a dimensionless form.

Thermostat model
We seek the functions{θ, Te, Tr , ω} such that

d

dt
(a∗θ + b∗ω) = Te(t)− θ(t), (B.12)

ω(t) = Hβ∗(θ(t)), (B.13)

d∗e
dTe
dt
= q∗e − (1+ v∗)Te(t)+ ω(t)Tr(t − τro) (B.14)

+ (1− ω(t))Te(t − τr) (B.15)

+ v∗(1− γ )Te(t − τh)− e∗, (B.16)

d∗r
dTr
dt
= ω(t)(Te(t − τri)− Tr(t))− h∗r (Tr(t)+ Ta), (B.17)
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Te(t) = Te0(t), Tr(t) = Tr0(t), −τ 6 t 6 0, (B.18)

θ(0) = θ0, ω(0) = ω0. (B.19)

Here the initial conditions are scaled appropriately.
The nondimensional model has only 15 parameters, but this reduction seems to make little

difference, and it is not clear if there are better choices of scaling.
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